diff options
-rw-r--r-- | rumba/model.py | 96 |
1 files changed, 86 insertions, 10 deletions
diff --git a/rumba/model.py b/rumba/model.py index f48b0dd..5c22185 100644 --- a/rumba/model.py +++ b/rumba/model.py @@ -236,6 +236,7 @@ class Experiment: nodes = list() self.nodes = nodes self.testbed = testbed + self.enrollment_strategy = 'minimal' # 'full-mesh', 'manual' def __repr__(self): s = "" @@ -269,12 +270,8 @@ class Experiment: def del_node(self, node): self.nodes.remove(node) - # Examine the nodes, DIFs, registrations and compute the registration - # and enrollment order, etc. - def generate(self): - - ###### Compute registration/enrollment order for DIFs ####### - + # Compute registration/enrollment order for DIFs + def compute_dif_ordering(self): # Compute DIFs dependency graph, as both adjacency and incidence list. difsdeps_adj = dict() difsdeps_inc = dict() @@ -326,11 +323,90 @@ class Experiment: "circular dependencies, involving the following"\ " DIFs: %s" % circular_set) - del difsdeps_inc_cnt - del difsdeps_adj - del circular_set + print("DIF topological ordering: %s" % self.dif_ordering) + + # Compute per-DIF graphs, to be called after compute_dif_ordering() + def compute_enrollments(self): + dif_graphs = dict() + self.enrollments = dict() + + for dif in self.dif_ordering: + neighsets = dict() + dif_graphs[dif] = dict() + first = None + + # For each N-1-DIF supporting this DIF, compute the set of nodes that + # share such N-1-DIF. This set will be called the 'neighset' of + # the N-1-DIF for the current DIF. + + for node in self.nodes: + if dif in node.dif_registrations: + dif_graphs[dif][node] = [] # init for later use + if first == None: # pick any node for later use + first = node + for lower_dif in node.dif_registrations[dif]: + if lower_dif not in neighsets: + neighsets[lower_dif] = [] + neighsets[lower_dif].append(node) + + # Build the graph, represented as adjacency list + for lower_dif in neighsets: + # Each neighset corresponds to a complete (sub)graph. + for node1 in neighsets[lower_dif]: + for node2 in neighsets[lower_dif]: + if node1 != node2: + dif_graphs[dif][node1].append((node2, lower_dif)) + + if first == None: + # This is a shim DIF, nothing to do + continue + + print("DIF graphs for %s" % dif) + for node in dif_graphs[dif]: + for edge in dif_graphs[dif][node]: + print("%s --> %s [%s]" % (node.name, edge[0].name, edge[1])) + + self.enrollments[dif] = [] + + if self.enrollment_strategy == 'minimal': + # To generate the list of enrollments, we simulate one, + # using breadth-first trasversal. + enrolled = set([first]) + frontier = set([first]) + while len(frontier): + cur = frontier.pop() + for edge in dif_graphs[dif][cur]: + if edge[0] not in enrolled: + enrolled.add(edge[0]) + self.enrollments[dif].append({'enrollee': edge[0], + 'enroller': cur, + 'lower_dif': edge[1]}) + frontier.add(edge[0]) + + elif self.enrollment_strategy == 'full-mesh': + for cur in dif_graphs[dif]: + for edge in dif_graphs[dif][cur]: + if cur < edge[0]: + self.enrollments[dif].append({'enrollee': cur, + 'enroller': edge[0], + 'lower_dif': edge[1]}) + + else: + # This is a bug + assert(False) + + print("Enrollments for %s" % dif) + for e in self.enrollments[dif]: + print(" %s --> %s through N-1-DIF %s" % \ + (e['enrollee'].name, + e['enroller'].name, + e['lower_dif'])) - print(self.dif_ordering) + # Examine the nodes, DIFs, registrations and compute the registration + # and enrollment order, etc. + def generate(self): + self.compute_dif_ordering() + self.compute_enrollments() # Realize the experiment, using a testbed-specific setup def swap_in(self): |