/* * Ouroboros - Copyright (C) 2016 - 2017 * * API for applications * * Dimitri Staessens <dimitri.staessens@ugent.be> * Sander Vrijders <sander.vrijders@ugent.be> * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public License * version 2.1 as published by the Free Software Foundation. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., http://www.fsf.org/about/contact/. */ #define _POSIX_C_SOURCE 200809L #include "config.h" #include <ouroboros/errno.h> #include <ouroboros/dev.h> #include <ouroboros/ipcp-dev.h> #include <ouroboros/local-dev.h> #include <ouroboros/sockets.h> #include <ouroboros/fcntl.h> #include <ouroboros/bitmap.h> #include <ouroboros/shm_flow_set.h> #include <ouroboros/shm_rdrbuff.h> #include <ouroboros/shm_rbuff.h> #include <ouroboros/utils.h> #include <ouroboros/fqueue.h> #include <ouroboros/qoscube.h> #include <ouroboros/timerwheel.h> #include <ouroboros/frct_pci.h> #include <stdlib.h> #include <string.h> #include <stdio.h> #define BUF_SIZE 1500 #define TW_ELEMENTS 6000 #define TW_RESOLUTION 1 /* ms */ #define MPL 2000 /* ms */ struct flow_set { size_t idx; bool np1_set; }; struct fqueue { int fqueue[SHM_BUFFER_SIZE]; /* safe copy from shm */ size_t fqsize; size_t next; }; enum port_state { PORT_NULL = 0, PORT_INIT, PORT_ID_PENDING, PORT_ID_ASSIGNED, PORT_DESTROY }; struct frcti { bool used; struct tw_f * snd_inact; bool snd_drf; uint64_t snd_lwe; uint64_t snd_rwe; struct tw_f * rcv_inact; bool rcv_drf; uint64_t rcv_lwe; uint64_t rcv_rwe; uint8_t conf_flags; }; struct port { int fd; enum port_state state; pthread_mutex_t state_lock; pthread_cond_t state_cond; }; struct flow { struct shm_rbuff * rx_rb; struct shm_rbuff * tx_rb; struct shm_flow_set * set; int port_id; int oflags; qoscube_t cube; qosspec_t spec; pid_t api; bool timesout; struct timespec rcv_timeo; }; struct { char * ap_name; pid_t api; struct shm_rdrbuff * rdrb; struct shm_flow_set * fqset; struct timerwheel * tw; struct bmp * fds; struct bmp * fqueues; struct flow * flows; struct port * ports; struct frcti * frcti; pthread_rwlock_t lock; } ai; static void port_destroy(struct port * p) { pthread_mutex_lock(&p->state_lock); if (p->state == PORT_DESTROY) { pthread_mutex_unlock(&p->state_lock); return; } if (p->state == PORT_ID_PENDING) p->state = PORT_DESTROY; else p->state = PORT_NULL; pthread_cond_signal(&p->state_cond); while (p->state != PORT_NULL) pthread_cond_wait(&p->state_cond, &p->state_lock); p->fd = -1; p->state = PORT_INIT; pthread_mutex_unlock(&p->state_lock); } static void port_set_state(struct port * p, enum port_state state) { pthread_mutex_lock(&p->state_lock); if (p->state == PORT_DESTROY) { pthread_mutex_unlock(&p->state_lock); return; } p->state = state; pthread_cond_broadcast(&p->state_cond); pthread_mutex_unlock(&p->state_lock); } static enum port_state port_wait_assign(int port_id) { enum port_state state; struct port * p; pthread_rwlock_rdlock(&ai.lock); p = &ai.ports[port_id]; pthread_rwlock_unlock(&ai.lock); pthread_mutex_lock(&p->state_lock); if (p->state == PORT_ID_ASSIGNED) { pthread_mutex_unlock(&p->state_lock); return PORT_ID_ASSIGNED; } if (p->state == PORT_INIT) p->state = PORT_ID_PENDING; while (p->state == PORT_ID_PENDING) pthread_cond_wait(&p->state_cond, &p->state_lock); if (p->state == PORT_DESTROY) { p->state = PORT_NULL; pthread_cond_broadcast(&p->state_cond); } state = p->state; assert(state != PORT_INIT); pthread_mutex_unlock(&p->state_lock); return state; } static int api_announce(char * ap_name) { irm_msg_t msg = IRM_MSG__INIT; irm_msg_t * recv_msg = NULL; int ret = -1; msg.code = IRM_MSG_CODE__IRM_API_ANNOUNCE; msg.has_api = true; msg.api = ai.api; msg.ap_name = ap_name; recv_msg = send_recv_irm_msg(&msg); if (recv_msg == NULL) { return -EIRMD; } if (!recv_msg->has_result || (ret = recv_msg->result)) { irm_msg__free_unpacked(recv_msg, NULL); return ret; } irm_msg__free_unpacked(recv_msg, NULL); return ret; } /* Call under flows lock */ static int finalize_write(int fd, size_t idx) { if (shm_rbuff_write(ai.flows[fd].tx_rb, idx) < 0) return -ENOTALLOC; shm_flow_set_notify(ai.flows[fd].set, ai.flows[fd].port_id); return 0; } static int frcti_init(int fd) { struct frcti * frcti; frcti = &(ai.frcti[fd]); frcti->used = true; frcti->snd_drf = true; frcti->snd_lwe = 0; frcti->snd_rwe = 0; frcti->rcv_drf = true; frcti->rcv_lwe = 0; frcti->rcv_rwe = 0; frcti->conf_flags = CONF_ERROR_CHECK; return 0; } static void frcti_clear(int fd) { struct frcti * frcti; frcti = &(ai.frcti[fd]); frcti->used = false; frcti->snd_inact = NULL; frcti->rcv_inact = NULL; } static void frcti_fini(int fd) { struct frcti * frcti; frcti = &(ai.frcti[fd]); /* FIXME: We actually need to wait until these timers become NULL. */ if (frcti->snd_inact != NULL) timerwheel_stop(ai.tw, frcti->snd_inact); if (frcti->rcv_inact != NULL) timerwheel_stop(ai.tw, frcti->rcv_inact); frcti_clear(fd); } static int frcti_configure(int fd, qosspec_t * qos) { /* FIXME: Send configuration message here to other side. */ (void) fd; (void) qos; return 0; } static void frcti_snd_inactivity(void * arg) { struct frcti * frcti; pthread_rwlock_wrlock(&ai.lock); frcti = (struct frcti * ) arg; frcti->snd_drf = true; frcti->snd_inact = NULL; pthread_rwlock_unlock(&ai.lock); } /* Called under flows lock */ static int frcti_write(int fd, struct shm_du_buff * sdb) { struct frcti * frcti; struct frct_pci pci; memset(&pci, 0, sizeof(pci)); frcti = &(ai.frcti[fd]); pthread_rwlock_unlock(&ai.lock); timerwheel_move(ai.tw); pthread_rwlock_rdlock(&ai.lock); /* * Set the DRF in the first packet of a new run of SDUs, * otherwise simply recharge the timer. */ if (frcti->snd_drf) { frcti->snd_inact = timerwheel_start(ai.tw, frcti_snd_inactivity, frcti, 2 * MPL); if (frcti->snd_inact == NULL) return -1; pci.flags |= FLAG_DATA_RUN; frcti->snd_drf = false; } else { if (timerwheel_restart(ai.tw, frcti->snd_inact, 2 * MPL)) return -1; } pci.seqno = frcti->snd_lwe++; pci.type |= PDU_TYPE_DATA; if (frct_pci_ser(sdb, &pci, frcti->conf_flags & CONF_ERROR_CHECK)) return -1; if (finalize_write(fd, shm_du_buff_get_idx(sdb))) return -ENOTALLOC; return 0; } static void frcti_rcv_inactivity(void * arg) { struct frcti * frcti; pthread_rwlock_wrlock(&ai.lock); frcti = (struct frcti * ) arg; frcti->rcv_drf = true; frcti->rcv_inact = NULL; pthread_rwlock_unlock(&ai.lock); } static ssize_t frcti_read(int fd) { ssize_t idx = -1; struct timespec abstime; struct frcti * frcti; struct frct_pci pci; struct shm_du_buff * sdb; timerwheel_move(ai.tw); pthread_rwlock_rdlock(&ai.lock); if (ai.flows[fd].oflags & FLOW_O_NONBLOCK) { idx = shm_rbuff_read(ai.flows[fd].rx_rb); pthread_rwlock_unlock(&ai.lock); } else { struct shm_rbuff * rb = ai.flows[fd].rx_rb; bool timeo = ai.flows[fd].timesout; struct timespec timeout = ai.flows[fd].rcv_timeo; pthread_rwlock_unlock(&ai.lock); if (timeo) { clock_gettime(PTHREAD_COND_CLOCK, &abstime); ts_add(&abstime, &timeout, &abstime); idx = shm_rbuff_read_b(rb, &abstime); } else { idx = shm_rbuff_read_b(rb, NULL); } } if (idx < 0) return idx; pthread_rwlock_rdlock(&ai.lock); frcti = &(ai.frcti[fd]); sdb = shm_rdrbuff_get(ai.rdrb, idx); /* SDU may be corrupted. */ if (frct_pci_des(sdb, &pci, frcti->conf_flags & CONF_ERROR_CHECK)) { pthread_rwlock_unlock(&ai.lock); shm_rdrbuff_remove(ai.rdrb, idx); return -EAGAIN; } /* We don't accept packets when there is no inactivity timer. */ if (frcti->rcv_drf && !(pci.flags & FLAG_DATA_RUN)) { pthread_rwlock_unlock(&ai.lock); shm_rdrbuff_remove(ai.rdrb, idx); return -EAGAIN; } /* * If there is an inactivity timer and the DRF is set, * reset the state of the connection. */ if (pci.flags & FLAG_DATA_RUN) { frcti->rcv_drf = true; if (frcti->rcv_inact != NULL) timerwheel_stop(ai.tw, frcti->rcv_inact); frcti->rcv_lwe = pci.seqno; } /* * Start receiver inactivity if this packet has the DRF, * otherwise simply restart it. */ if (frcti->rcv_drf) { frcti->rcv_inact = timerwheel_start(ai.tw, frcti_rcv_inactivity, frcti, 3 * MPL); if (frcti->rcv_inact == NULL) { pthread_rwlock_unlock(&ai.lock); shm_rdrbuff_remove(ai.rdrb, idx); return -EAGAIN; } frcti->rcv_drf = false; } else { if (timerwheel_restart(ai.tw, frcti->rcv_inact, 3 * MPL)) { pthread_rwlock_unlock(&ai.lock); shm_rdrbuff_remove(ai.rdrb, idx); return -EAGAIN; } } pthread_rwlock_unlock(&ai.lock); return idx; } static int frcti_event_wait(struct flow_set * set, struct fqueue * fq, const struct timespec * timeout) { int ret; assert(set); assert(fq); timerwheel_move(ai.tw); /* * FIXME: Return the fq only if a data SDU * for the application is available. */ ret = shm_flow_set_wait(ai.fqset, set->idx, fq->fqueue, timeout); if (ret == -ETIMEDOUT) { fq->fqsize = 0; return -ETIMEDOUT; } return ret; } static void flow_clear(int fd) { assert(!(fd < 0)); memset(&ai.flows[fd], 0, sizeof(ai.flows[fd])); ai.flows[fd].port_id = -1; ai.flows[fd].api = -1; ai.flows[fd].cube = QOS_CUBE_BE; } static void flow_fini(int fd) { assert(!(fd < 0)); if (ai.flows[fd].port_id != -1) port_destroy(&ai.ports[ai.flows[fd].port_id]); if (ai.flows[fd].rx_rb != NULL) shm_rbuff_close(ai.flows[fd].rx_rb); if (ai.flows[fd].tx_rb != NULL) shm_rbuff_close(ai.flows[fd].tx_rb); if (ai.flows[fd].set != NULL) shm_flow_set_close(ai.flows[fd].set); if (ai.frcti[fd].used) frcti_fini(fd); flow_clear(fd); } static int flow_init(int port_id, pid_t api, qoscube_t qc) { int fd; pthread_rwlock_wrlock(&ai.lock); fd = bmp_allocate(ai.fds); if (!bmp_is_id_valid(ai.fds, fd)) { pthread_rwlock_unlock(&ai.lock); return -EBADF; } ai.flows[fd].rx_rb = shm_rbuff_open(ai.api, port_id); if (ai.flows[fd].rx_rb == NULL) { bmp_release(ai.fds, fd); pthread_rwlock_unlock(&ai.lock); return -ENOMEM; } ai.flows[fd].tx_rb = shm_rbuff_open(api, port_id); if (ai.flows[fd].tx_rb == NULL) { flow_fini(fd); bmp_release(ai.fds, fd); pthread_rwlock_unlock(&ai.lock); return -ENOMEM; } ai.flows[fd].set = shm_flow_set_open(api); if (ai.flows[fd].set == NULL) { flow_fini(fd); bmp_release(ai.fds, fd); pthread_rwlock_unlock(&ai.lock); return -ENOMEM; } ai.flows[fd].port_id = port_id; ai.flows[fd].oflags = FLOW_O_DEFAULT; ai.flows[fd].api = api; ai.flows[fd].cube = qc; ai.flows[fd].spec = qos_cube_to_spec(qc); ai.ports[port_id].fd = fd; port_set_state(&ai.ports[port_id], PORT_ID_ASSIGNED); pthread_rwlock_unlock(&ai.lock); return fd; } int ouroboros_init(const char * ap_name) { int i = 0; int ret = -ENOMEM; assert(ai.ap_name == NULL); ai.api = getpid(); ai.fds = bmp_create(AP_MAX_FLOWS - AP_RES_FDS, AP_RES_FDS); if (ai.fds == NULL) goto fail_fds; ai.fqueues = bmp_create(AP_MAX_FQUEUES, 0); if (ai.fqueues == NULL) goto fail_fqueues; ai.fqset = shm_flow_set_create(); if (ai.fqset == NULL) goto fail_fqset; ai.rdrb = shm_rdrbuff_open(); if (ai.rdrb == NULL) { ret = -EIRMD; goto fail_rdrb; } ai.flows = malloc(sizeof(*ai.flows) * AP_MAX_FLOWS); if (ai.flows == NULL) goto fail_flows; ai.frcti = malloc(sizeof(*ai.frcti) * AP_MAX_FLOWS); if (ai.frcti == NULL) goto fail_frcti; for (i = 0; i < AP_MAX_FLOWS; ++i) { flow_clear(i); frcti_clear(i); } ai.ports = malloc(sizeof(*ai.ports) * SYS_MAX_FLOWS); if (ai.ports == NULL) goto fail_ports; if (ap_name != NULL) { ai.ap_name = strdup(path_strip((char *) ap_name)); if (ai.ap_name == NULL) goto fail_ap_name; if (api_announce((char *) ai.ap_name)) { ret = -EIRMD; goto fail_announce; } } for (i = 0; i < SYS_MAX_FLOWS; ++i) { ai.ports[i].state = PORT_INIT; if (pthread_mutex_init(&ai.ports[i].state_lock, NULL)) { int j; for (j = 0; j < i; ++j) pthread_mutex_destroy(&ai.ports[j].state_lock); goto fail_announce; } if (pthread_cond_init(&ai.ports[i].state_cond, NULL)) { int j; for (j = 0; j < i; ++j) pthread_cond_destroy(&ai.ports[j].state_cond); goto fail_state_cond; } } if (pthread_rwlock_init(&ai.lock, NULL)) goto fail_lock; ai.tw = timerwheel_create(TW_RESOLUTION, TW_RESOLUTION * TW_ELEMENTS); if (ai.tw == NULL) goto fail_timerwheel; return 0; fail_timerwheel: pthread_rwlock_destroy(&ai.lock); fail_lock: for (i = 0; i < SYS_MAX_FLOWS; ++i) pthread_cond_destroy(&ai.ports[i].state_cond); fail_state_cond: for (i = 0; i < SYS_MAX_FLOWS; ++i) pthread_mutex_destroy(&ai.ports[i].state_lock); fail_announce: free(ai.ap_name); fail_ap_name: free(ai.ports); fail_ports: free(ai.frcti); fail_frcti: free(ai.flows); fail_flows: shm_rdrbuff_close(ai.rdrb); fail_rdrb: shm_flow_set_destroy(ai.fqset); fail_fqset: bmp_destroy(ai.fqueues); fail_fqueues: bmp_destroy(ai.fds); fail_fds: return ret; } void ouroboros_fini() { int i = 0; bmp_destroy(ai.fds); bmp_destroy(ai.fqueues); shm_flow_set_destroy(ai.fqset); if (ai.ap_name != NULL) free(ai.ap_name); pthread_rwlock_rdlock(&ai.lock); for (i = 0; i < AP_MAX_FLOWS; ++i) { if (ai.flows[i].port_id != -1) { ssize_t idx; while ((idx = shm_rbuff_read(ai.flows[i].rx_rb)) >= 0) shm_rdrbuff_remove(ai.rdrb, idx); flow_fini(i); } } for (i = 0; i < SYS_MAX_FLOWS; ++i) { pthread_mutex_destroy(&ai.ports[i].state_lock); pthread_cond_destroy(&ai.ports[i].state_cond); } shm_rdrbuff_close(ai.rdrb); if (ai.tw != NULL) timerwheel_destroy(ai.tw); free(ai.flows); free(ai.ports); pthread_rwlock_unlock(&ai.lock); pthread_rwlock_destroy(&ai.lock); } int flow_accept(qosspec_t * qs, const struct timespec * timeo) { irm_msg_t msg = IRM_MSG__INIT; irm_msg_t * recv_msg = NULL; int fd = -1; msg.code = IRM_MSG_CODE__IRM_FLOW_ACCEPT; msg.has_api = true; msg.api = ai.api; if (timeo != NULL) { msg.has_timeo_sec = true; msg.has_timeo_nsec = true; msg.timeo_sec = timeo->tv_sec; msg.timeo_nsec = timeo->tv_nsec; } recv_msg = send_recv_irm_msg(&msg); if (recv_msg == NULL) return -EIRMD; if (!recv_msg->has_result) { irm_msg__free_unpacked(recv_msg, NULL); return -EIRMD; } if (recv_msg->result != 0) { int res = recv_msg->result; irm_msg__free_unpacked(recv_msg, NULL); return res; } if (!recv_msg->has_api || !recv_msg->has_port_id || !recv_msg->has_qoscube) { irm_msg__free_unpacked(recv_msg, NULL); return -EIRMD; } fd = flow_init(recv_msg->port_id, recv_msg->api, recv_msg->qoscube); irm_msg__free_unpacked(recv_msg, NULL); if (fd < 0) return fd; pthread_rwlock_wrlock(&ai.lock); frcti_init(fd); if (qs != NULL) *qs = ai.flows[fd].spec; pthread_rwlock_unlock(&ai.lock); return fd; } int flow_alloc(const char * dst_name, qosspec_t * qs, const struct timespec * timeo) { irm_msg_t msg = IRM_MSG__INIT; irm_msg_t * recv_msg = NULL; qoscube_t qc = QOS_CUBE_BE; int fd; msg.code = IRM_MSG_CODE__IRM_FLOW_ALLOC; msg.dst_name = (char *) dst_name; msg.has_api = true; msg.has_qoscube = true; msg.api = ai.api; if (qs != NULL) qc = qos_spec_to_cube(*qs); msg.qoscube = qc; if (timeo != NULL) { msg.has_timeo_sec = true; msg.has_timeo_nsec = true; msg.timeo_sec = timeo->tv_sec; msg.timeo_nsec = timeo->tv_nsec; } recv_msg = send_recv_irm_msg(&msg); if (recv_msg == NULL) return -EIRMD; if (!recv_msg->has_result) { irm_msg__free_unpacked(recv_msg, NULL); return -EIRMD; } if (recv_msg->result != 0) { int res = recv_msg->result; irm_msg__free_unpacked(recv_msg, NULL); return res; } if (!recv_msg->has_api || !recv_msg->has_port_id) { irm_msg__free_unpacked(recv_msg, NULL); return -EIRMD; } fd = flow_init(recv_msg->port_id, recv_msg->api, qc); irm_msg__free_unpacked(recv_msg, NULL); if (fd < 0) return fd; pthread_rwlock_wrlock(&ai.lock); frcti_init(fd); if (frcti_configure(fd, qs)) { flow_fini(fd); bmp_release(ai.fds, fd); pthread_rwlock_unlock(&ai.lock); return -1; } pthread_rwlock_unlock(&ai.lock); return fd; } int flow_dealloc(int fd) { irm_msg_t msg = IRM_MSG__INIT; irm_msg_t * recv_msg = NULL; if (fd < 0) return -EINVAL; msg.code = IRM_MSG_CODE__IRM_FLOW_DEALLOC; msg.has_port_id = true; msg.has_api = true; msg.api = ai.api; pthread_rwlock_rdlock(&ai.lock); assert(!(ai.flows[fd].port_id < 0)); msg.port_id = ai.flows[fd].port_id; pthread_rwlock_unlock(&ai.lock); recv_msg = send_recv_irm_msg(&msg); if (recv_msg == NULL) return -EIRMD; if (!recv_msg->has_result) { irm_msg__free_unpacked(recv_msg, NULL); assert(false); return -1; } irm_msg__free_unpacked(recv_msg, NULL); pthread_rwlock_wrlock(&ai.lock); flow_fini(fd); bmp_release(ai.fds, fd); pthread_rwlock_unlock(&ai.lock); return 0; } int flow_set_flags(int fd, int flags) { int old; if (fd < 0 || fd >= AP_MAX_FLOWS) return -EBADF; pthread_rwlock_wrlock(&ai.lock); if (ai.flows[fd].port_id < 0) { pthread_rwlock_unlock(&ai.lock); return -ENOTALLOC; } old = ai.flows[fd].oflags; ai.flows[fd].oflags = flags; if (flags & FLOW_O_WRONLY) shm_rbuff_block(ai.flows[fd].rx_rb); if (flags & FLOW_O_RDWR) shm_rbuff_unblock(ai.flows[fd].rx_rb); pthread_rwlock_unlock(&ai.lock); return old; } int flow_get_flags(int fd) { int old; if (fd < 0 || fd >= AP_MAX_FLOWS) return -EBADF; pthread_rwlock_wrlock(&ai.lock); if (ai.flows[fd].port_id < 0) { pthread_rwlock_unlock(&ai.lock); return -ENOTALLOC; } old = ai.flows[fd].oflags; pthread_rwlock_unlock(&ai.lock); return old; } int flow_get_timeout(int fd, struct timespec * timeo) { int ret = 0; if (fd < 0 || fd >= AP_MAX_FLOWS || timeo == NULL) return -EINVAL; pthread_rwlock_wrlock(&ai.lock); if (ai.flows[fd].port_id < 0) { pthread_rwlock_unlock(&ai.lock); return -ENOTALLOC; } if (ai.flows[fd].timesout) *timeo = ai.flows[fd].rcv_timeo; else ret = -EPERM; pthread_rwlock_unlock(&ai.lock); return ret; } int flow_set_timeout(int fd, const struct timespec * timeo) { if (fd < 0 || fd >= AP_MAX_FLOWS) return -EINVAL; pthread_rwlock_wrlock(&ai.lock); if (ai.flows[fd].port_id < 0) { pthread_rwlock_unlock(&ai.lock); return -ENOTALLOC; } if (timeo == NULL) { ai.flows[fd].timesout = false; } else { ai.flows[fd].timesout = true; ai.flows[fd].rcv_timeo = *timeo; } pthread_rwlock_unlock(&ai.lock); return 0; } int flow_get_qosspec(int fd, qosspec_t * qs) { if (fd < 0 || fd >= AP_MAX_FLOWS || qs == NULL) return -EINVAL; pthread_rwlock_wrlock(&ai.lock); if (ai.flows[fd].port_id < 0) { pthread_rwlock_unlock(&ai.lock); return -ENOTALLOC; } *qs = ai.flows[fd].spec; pthread_rwlock_unlock(&ai.lock); return 0; } ssize_t flow_write(int fd, const void * buf, size_t count) { ssize_t idx; if (buf == NULL) return 0; if (fd < 0 || fd >= AP_MAX_FLOWS) return -EBADF; pthread_rwlock_rdlock(&ai.lock); if (ai.flows[fd].port_id < 0) { pthread_rwlock_unlock(&ai.lock); return -ENOTALLOC; } if ((ai.flows[fd].oflags & FLOW_O_ACCMODE) == FLOW_O_RDONLY) { pthread_rwlock_unlock(&ai.lock); return -EPERM; } if (ai.flows[fd].oflags & FLOW_O_NONBLOCK) { idx = shm_rdrbuff_write(ai.rdrb, DU_BUFF_HEADSPACE, DU_BUFF_TAILSPACE, buf, count); if (idx < 0) { pthread_rwlock_unlock(&ai.lock); return idx; } } else { /* blocking */ pthread_rwlock_unlock(&ai.lock); idx = shm_rdrbuff_write_b(ai.rdrb, DU_BUFF_HEADSPACE, DU_BUFF_TAILSPACE, buf, count); pthread_rwlock_rdlock(&ai.lock); } if (!ai.frcti[fd].used) { if (finalize_write(fd, idx)) { pthread_rwlock_unlock(&ai.lock); shm_rdrbuff_remove(ai.rdrb, idx); return -ENOTALLOC; } } else { if (frcti_write(fd, shm_rdrbuff_get(ai.rdrb, idx))) { pthread_rwlock_unlock(&ai.lock); shm_rdrbuff_remove(ai.rdrb, idx); return -1; } } pthread_rwlock_unlock(&ai.lock); return 0; } ssize_t flow_read(int fd, void * buf, size_t count) { ssize_t idx = -1; ssize_t n; uint8_t * sdu; if (fd < 0 || fd >= AP_MAX_FLOWS) return -EBADF; pthread_rwlock_rdlock(&ai.lock); if (ai.flows[fd].port_id < 0) { pthread_rwlock_unlock(&ai.lock); return -ENOTALLOC; } pthread_rwlock_unlock(&ai.lock); if (!ai.frcti[fd].used) idx = shm_rbuff_read(ai.flows[fd].rx_rb); else idx = frcti_read(fd); if (idx < 0) { assert(idx == -EAGAIN || idx == -ETIMEDOUT); return idx; } n = shm_rdrbuff_read(&sdu, ai.rdrb, idx); if (n < 0) return -1; memcpy(buf, sdu, MIN((size_t) n, count)); shm_rdrbuff_remove(ai.rdrb, idx); return n; } /* fqueue functions */ struct flow_set * flow_set_create() { struct flow_set * set = malloc(sizeof(*set)); if (set == NULL) return NULL; assert(ai.fqueues); pthread_rwlock_wrlock(&ai.lock); set->idx = bmp_allocate(ai.fqueues); if (!bmp_is_id_valid(ai.fqueues, set->idx)) { pthread_rwlock_unlock(&ai.lock); free(set); return NULL; } set->np1_set = false; pthread_rwlock_unlock(&ai.lock); return set; } void flow_set_destroy(struct flow_set * set) { if (set == NULL) return; flow_set_zero(set); pthread_rwlock_wrlock(&ai.lock); bmp_release(ai.fqueues, set->idx); pthread_rwlock_unlock(&ai.lock); free(set); } struct fqueue * fqueue_create() { struct fqueue * fq = malloc(sizeof(*fq)); if (fq == NULL) return NULL; memset(fq->fqueue, -1, (SHM_BUFFER_SIZE) * sizeof(*fq->fqueue)); fq->fqsize = 0; fq->next = 0; return fq; } void fqueue_destroy(struct fqueue * fq) { if (fq == NULL) return; free(fq); } void flow_set_zero(struct flow_set * set) { if (set == NULL) return; shm_flow_set_zero(ai.fqset, set->idx); } int flow_set_add(struct flow_set * set, int fd) { int ret; size_t sdus; size_t i; if (set == NULL) return -EINVAL; pthread_rwlock_rdlock(&ai.lock); ret = shm_flow_set_add(ai.fqset, set->idx, ai.flows[fd].port_id); sdus = shm_rbuff_queued(ai.flows[fd].rx_rb); for (i = 0; i < sdus; i++) shm_flow_set_notify(ai.fqset, ai.flows[fd].port_id); if (ai.frcti[fd].used) set->np1_set = true; pthread_rwlock_unlock(&ai.lock); return ret; } void flow_set_del(struct flow_set * set, int fd) { if (set == NULL) return; pthread_rwlock_rdlock(&ai.lock); if (ai.flows[fd].port_id >= 0) shm_flow_set_del(ai.fqset, set->idx, ai.flows[fd].port_id); pthread_rwlock_unlock(&ai.lock); } bool flow_set_has(const struct flow_set * set, int fd) { bool ret = false; if (set == NULL || fd < 0) return false; pthread_rwlock_rdlock(&ai.lock); if (ai.flows[fd].port_id < 0) { pthread_rwlock_unlock(&ai.lock); return false; } ret = (shm_flow_set_has(ai.fqset, set->idx, ai.flows[fd].port_id) == 1); pthread_rwlock_unlock(&ai.lock); return ret; } int fqueue_next(struct fqueue * fq) { int fd; if (fq == NULL) return -EINVAL; if (fq->fqsize == 0) return -EPERM; pthread_rwlock_rdlock(&ai.lock); fd = ai.ports[fq->fqueue[fq->next++]].fd; pthread_rwlock_unlock(&ai.lock); if (fq->next == fq->fqsize) { fq->fqsize = 0; fq->next = 0; } return fd; } int flow_event_wait(struct flow_set * set, struct fqueue * fq, const struct timespec * timeout) { ssize_t ret; struct timespec abstime; struct timespec * t = NULL; if (set == NULL || fq == NULL) return -EINVAL; if (fq->fqsize > 0) return fq->fqsize; assert(!fq->next); if (timeout != NULL) { clock_gettime(PTHREAD_COND_CLOCK, &abstime); ts_add(&abstime, timeout, &abstime); t = &abstime; } if (set->np1_set) ret = frcti_event_wait(set, fq, t); else ret = shm_flow_set_wait(ai.fqset, set->idx, fq->fqueue, t); if (ret == -ETIMEDOUT) { fq->fqsize = 0; return -ETIMEDOUT; } fq->fqsize = ret; assert(ret); return ret; } /* ipcp-dev functions */ int np1_flow_alloc(pid_t n_api, int port_id, qoscube_t qc) { return flow_init(port_id, n_api, qc); } int np1_flow_dealloc(int port_id) { int fd; pthread_rwlock_rdlock(&ai.lock); fd = ai.ports[port_id].fd; pthread_rwlock_unlock(&ai.lock); return fd; } int np1_flow_resp(int port_id) { int fd; if (port_wait_assign(port_id) != PORT_ID_ASSIGNED) return -1; pthread_rwlock_rdlock(&ai.lock); fd = ai.ports[port_id].fd; pthread_rwlock_unlock(&ai.lock); return fd; } int ipcp_create_r(pid_t api, int result) { irm_msg_t msg = IRM_MSG__INIT; irm_msg_t * recv_msg = NULL; int ret = -1; msg.code = IRM_MSG_CODE__IPCP_CREATE_R; msg.has_api = true; msg.api = api; msg.has_result = true; msg.result = result; recv_msg = send_recv_irm_msg(&msg); if (recv_msg == NULL) return -EIRMD; if (recv_msg->has_result == false) { irm_msg__free_unpacked(recv_msg, NULL); return -1; } ret = recv_msg->result; irm_msg__free_unpacked(recv_msg, NULL); return ret; } int ipcp_flow_req_arr(pid_t api, const uint8_t * dst, size_t len, qoscube_t qc) { irm_msg_t msg = IRM_MSG__INIT; irm_msg_t * recv_msg = NULL; int fd = -1; if (dst == NULL) return -EINVAL; msg.code = IRM_MSG_CODE__IPCP_FLOW_REQ_ARR; msg.has_api = true; msg.api = api; msg.has_hash = true; msg.hash.len = len; msg.hash.data = (uint8_t *) dst; msg.has_qoscube = true; msg.qoscube = qc; recv_msg = send_recv_irm_msg(&msg); if (recv_msg == NULL) return -EIRMD; if (!recv_msg->has_port_id || !recv_msg->has_api) { irm_msg__free_unpacked(recv_msg, NULL); return -1; } if (recv_msg->has_result && recv_msg->result) { irm_msg__free_unpacked(recv_msg, NULL); return -1; } fd = flow_init(recv_msg->port_id, recv_msg->api, qc); irm_msg__free_unpacked(recv_msg, NULL); return fd; } int ipcp_flow_alloc_reply(int fd, int response) { irm_msg_t msg = IRM_MSG__INIT; irm_msg_t * recv_msg = NULL; int ret = -1; msg.code = IRM_MSG_CODE__IPCP_FLOW_ALLOC_REPLY; msg.has_port_id = true; pthread_rwlock_rdlock(&ai.lock); msg.port_id = ai.flows[fd].port_id; pthread_rwlock_unlock(&ai.lock); msg.has_response = true; msg.response = response; recv_msg = send_recv_irm_msg(&msg); if (recv_msg == NULL) return -EIRMD; if (recv_msg->has_result == false) { irm_msg__free_unpacked(recv_msg, NULL); return -1; } ret = recv_msg->result; irm_msg__free_unpacked(recv_msg, NULL); return ret; } int ipcp_flow_read(int fd, struct shm_du_buff ** sdb) { ssize_t idx = -1; int port_id = -1; assert(fd >= 0); assert(sdb); pthread_rwlock_rdlock(&ai.lock); if ((port_id = ai.flows[fd].port_id) < 0) { pthread_rwlock_unlock(&ai.lock); return -ENOTALLOC; } pthread_rwlock_unlock(&ai.lock); if (!ai.frcti[fd].used) idx = shm_rbuff_read(ai.flows[fd].rx_rb); else idx = frcti_read(fd); if (idx < 0) return idx; *sdb = shm_rdrbuff_get(ai.rdrb, idx); return 0; } int ipcp_flow_write(int fd, struct shm_du_buff * sdb) { if (sdb == NULL) return -EINVAL; pthread_rwlock_rdlock(&ai.lock); if (ai.flows[fd].port_id < 0) { pthread_rwlock_unlock(&ai.lock); return -ENOTALLOC; } if ((ai.flows[fd].oflags & FLOW_O_ACCMODE) == FLOW_O_RDONLY) { pthread_rwlock_unlock(&ai.lock); return -EPERM; } assert(ai.flows[fd].tx_rb); if (!ai.frcti[fd].used) { if (finalize_write(fd, shm_du_buff_get_idx(sdb))) { pthread_rwlock_unlock(&ai.lock); return -ENOTALLOC; } } else { if (frcti_write(fd, sdb)) { pthread_rwlock_unlock(&ai.lock); return -1; } } pthread_rwlock_unlock(&ai.lock); return 0; } int ipcp_sdb_reserve(struct shm_du_buff ** sdb, size_t len) { struct shm_rdrbuff * rdrb; ssize_t idx; rdrb = ai.rdrb; idx = shm_rdrbuff_write_b(rdrb, DU_BUFF_HEADSPACE, DU_BUFF_TAILSPACE, NULL, len); if (idx < 0) return -1; *sdb = shm_rdrbuff_get(rdrb, idx); return 0; } void ipcp_flow_fini(int fd) { struct shm_rbuff * rx_rb; flow_set_flags(fd, FLOW_O_WRONLY); pthread_rwlock_rdlock(&ai.lock); rx_rb = ai.flows[fd].rx_rb; pthread_rwlock_unlock(&ai.lock); shm_rbuff_fini(rx_rb); } int ipcp_flow_get_qoscube(int fd, qoscube_t * cube) { if (fd < 0 || fd >= AP_MAX_FLOWS || cube == NULL) return -EINVAL; pthread_rwlock_wrlock(&ai.lock); if (ai.flows[fd].port_id < 0) { pthread_rwlock_unlock(&ai.lock); return -ENOTALLOC; } *cube = ai.flows[fd].cube; pthread_rwlock_unlock(&ai.lock); return 0; } ssize_t local_flow_read(int fd) { ssize_t ret; assert(fd >= 0); pthread_rwlock_rdlock(&ai.lock); ret = shm_rbuff_read(ai.flows[fd].rx_rb); pthread_rwlock_unlock(&ai.lock); return ret; } int local_flow_write(int fd, size_t idx) { if (fd < 0) return -EINVAL; pthread_rwlock_rdlock(&ai.lock); if (ai.flows[fd].port_id < 0) { pthread_rwlock_unlock(&ai.lock); return -ENOTALLOC; } if (finalize_write(fd, idx)) { pthread_rwlock_unlock(&ai.lock); return -ENOTALLOC; } pthread_rwlock_unlock(&ai.lock); return 0; } void ipcp_sdb_release(struct shm_du_buff * sdb) { shm_rdrbuff_remove(ai.rdrb, shm_du_buff_get_idx(sdb)); }