| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The UDP layer will now use a single (configurable) UDP port, default
3435. This makes it easer to allocate flows as a client from behind a
NAT firewall without having to configure port forwarding rules. So
basically, from now on Ouroboros traffic is transported over a
bidirectional <src><port>:<dst><port> UDP tunnel. The reason for not
using/allowing different client/server ports is that it would require
reading from different sockets using select() or something similar,
but since we need the EID anyway (mgmt packets arrive on the same
server UDP port), there's not a lot of benefit in doing it. Now the
operation is similar to the ipcpd-eth, with the port somewhat
functioning as a "layer name", where in UDP, the Ethertype functions
as a "layer name".
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
| |
The ugent email addresses are shut down, updated to Ouroboros mail
addresses.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
| |
Happy New Year, Ouroboros!
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The EIDs are now 64-bit. This makes it a tad harder to guess them
(think of port scanning). The implementation has only the most
significant 32 bits random to quickly map EIDs to N+1 flows. While
this is equivalent to a random cookie as a check on flows, the
rationale is that valid endpoint IDs should be pretty hard to guess
(and thus be 64-bit random at least). Ideally one would use
content-addressable memory for this kind of mapping.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds congestion avoidance policies to the unicast IPCP. The
default policy is a multi-bit explicit congestion avoidance algorithm
based on data-center TCP congestion avoidance (DCTCP) to relay
information about the maximum queue depth that packets experienced to
the receiver. There's also a "nop" policy to disable congestion
avoidance for testing and benchmarking purposes.
The (initial) API for congestion avoidance policies is:
void * (* ctx_create)(void);
void (* ctx_destroy)(void * ctx);
These calls create / and or destroy a context for congestion control
for a specific flow. Thread-safety of the context is the
responsability of the flow allocator (operations on the ctx should be
performed under a lock).
ca_wnd_t (* ctx_update_snd)(void * ctx,
size_t len);
This is the sender call to update the context, and should be called
for every packet that is sent on the flow. The len parameter in this
API is the packet length, which allows calculating the bandwidth. It
returns an opaque union type that is used for the call to check/wait
if the congestion window is open or closed (and allowing to release
locks before waiting).
bool (* ctx_update_rcv)(void * ctx,
size_t len,
uint8_t ecn,
uint16_t * ece);
This is the call to update the flow congestion context on the receiver
side. It should be called for every received packet. It gets the ecn
value from the packet and its length, and returns the ECE (explicit
congestion experienced) value to be sent to the sender in case of
congestion. The boolean returned signals whether or not a congestion
update needs to be sent.
void (* ctx_update_ece)(void * ctx,
uint16_t ece);
This is the call for the sending side top update the context when it
receives an ECE update from the receiver.
void (* wnd_wait)(ca_wnd_t wnd);
This is a (blocking) call that waits for the congestion window to
clear. It should be stateless (to avoid waiting under locks). This may
change later on if passing the context is needed for different algorithms.
uint8_t (* calc_ecn)(int fd,
size_t len);
This is the call that intermediate IPCPs(routers) should use to update
the ECN field on passing packets.
The multi-bit ECN policy bases the value for the ECN field on the
depth of the rbuff queue packets will be sent on. I created another
call to grab the queue depth as fccntl is write-locking the
application. We can further optimize this to avoid most locking on the
rbuff.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
|
| |
This adds an equal-cost multipath routing policy to Ouroboros, based
on Nick Aerts' code. When selected, flows will send packets over all
paths with equal cost (hop count). Path selection is round-robin. It
does not yet take into account flows that are down.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
| |
The Packet Forwarding Function (PFF) was user-configurable using the
irm tool. However, this isn't really wanted since the PFF is dictated
by the routing algorithm. This moves the responsability for selecting
the correct PFF from the network admin to the unicast IPCP
implementation. Each routing policy now has to specify which PFF it
will use.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
| |
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
| |
This completes the renaming of the normal IPCP to the unicast IPCP in
the sources, to get everything consistent with the documentation.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
| |
The UDP IPCP now uses a fixed server UDP port (default 3435) for all
communications. This allows passing firewalls more easily since only a
single port needs to be opened. The client port can be fixed as well
if needed (default random). It uses an internal eid, so the MTU of the
UDP layer is reduced by 4 bytes, similar to the Ethernet IPCPs.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
| |
Updates the copyright notice in all sources to 2019.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
| |
This renames the normal IPCP to unicast in the irm toolkit.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
|
| |
This adds a broadcast IPCP that allows us to easily create multicast
applications. The broadcast IPCP accepts flows for "<layer_name>.mc".
A tool, obc (Ouroboros broadcast), is added that sends and reads a
message to a broadcast layer.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
| |
This fixes some memleaks and potential buffer overflows in the irm
tool.
Signed-off-by: Sander Vrijders <[email protected]>
Signed-off-by: Dimitri Staessens <[email protected]>
|
|
|
|
|
|
|
|
| |
The type check failed incorrectly if the type was specified because
the specified type was not set.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
| |
A bad check caused failure to set the hash algorithm for IPCPs.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
| |
The list_ipcps call had a memleak in the failure case. Also fixes a
compiler warning for a possible uninitialized variable and renumbers
the gpb ipcpd message fields.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The reg/unreg API is simplified to registering and unregistering a
single name with a single IPCP. The functionality associated with
registering names was moved from the IRMd to the irm tool. The
function to list IPCPs was simplified to return all IPCPs in the
system with their basic properties needed for management.
The above changes led to some needed changes in the irm tool and the
management functions that were depending on the previous behaviour of
list_ipcps.
Command line functionality to list IPCPs in the system is also added
to the irm tool.
Some older code was refactored.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
| |
This will check if the Ethertype value is a valid Ethertype in the irm
tool and the eth-dix IPCPd.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds an IPC Process that uses DIX Ethernet with an Ethertype that
is configurable at bootstrap. This allows parallel DIX layers over the
same Ethernet network with different Ethertypes (and one LLC
layer). It allows jumbo frames in the future, and should avoid the
problems we have with some routers not handling LLC traffic very
well. The destination endpoint ID is sent as a 16 bit integer, so the
maximum payload is 1498 bytes in standard Ethernet, and 8998 bytes
when Jumbo frames are used.
The implementation is very similar to the Ethernet LLC IPCP, so it is
implemented using preprocessor macros in the single source instead of
duplicating code.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
|
| |
This removes the dependencies for the tools on some ouroboros internal
headers (endian.h and time_utils.h) so they can be built out-of-tree.
The echo-app tool has been renamed oecho and the cbr tool has been
renamed ocbr.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
| |
This makes the TTL non-optional and allows the maximum (initial) value
of the TTL to be specified at bootstrap (the default is set to
60). The fd in the DT PCI is now called EID (Endpoint ID). The names
"dif" and "ae" have been replaced by "layer" and "component"
respectively in all sources.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
| |
A check was done in the irm tool for the pid of a newly created IPCP,
but it didn't catch all failures, this fixes that.
Signed-off-by: Sander Vrijders <[email protected]>
Signed-off-by: Dimitri Staessens <[email protected]>
|
|
|
|
|
|
|
| |
Happy New Year, Ouroboros.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This changes the terminology to use layer instead of DIF and deprecate
the word "shim" for the IPCPs that attach to Ethernet LLC and UDP .The
terminology has not yet been changed in the variable names etc.
This reflects the design choices in Ouroboros to make IPCPs pure
resource allocators instead of also providing an "IPC service". The
Ouroboros IPCPs that attach to Ethernet and UDP implement the
allocator and are thus not really shims.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
| |
The raptor code is refactored to completely remove reduntant code
relating to addresses. The dependency on the google protocol buffers
is removed. The build system will only build raptor if the relevant
kernel module is found on the system. The irm tool and the relevant
documentation are updated.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
|
| |
This makes the hashing algorithm configurable once more for the local
and the shim-eth-llc, since their scope is so small that it is up to
the network administrator to select a correct algorithm for the whole
network.
Signed-off-by: Sander Vrijders <[email protected]>
Signed-off-by: Dimitri Staessens <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
| |
This refactors ouroboros to use "program" instead of "application
process" and "process" instead of "application process instance" to
align with current naming in current Operating Systems courses instead
of the ISO nomenclature adopted by RINA. This change permeates through
the entire implementation. Also contains some minor other refactors.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
|
| |
The binding of the normal IPCP to its name is moved from the source
code to the irm tool introducing the "autobind" option for the
bootstrap and enroll commands. With this option, the IPCP will be
bound to the IPCP name and the DIF name automatically.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
| |
A more permissive license is needed on the tools since they serve as
example code for programs built on top of the ouroboros-dev and
ouroboros-irm libraries.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
| |
This adds the Loop-Free Alternates (LFA) policy. In case a link goes
down a LFA may be selected to route the SDUs on without causing loops
instead of the main hop that just went down.
|
|
|
|
|
| |
This adds a PFF that returns an alternate hop as next hop in case the
hop that would have been returned is down.
|
|
|
|
|
| |
This turns the PDU Forwarding Function of the IPCP into a policy. For
now only the simple PFF policy is available.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The graph adjacency manager has been deprecated in favor of providing
an external interface into the connectivity manager so that
adjacencies can be controlled from the command line, user scripts or
user applications.
The gam and its associated policies were removed from the normal IPCP
and the IRM configuration tools. The "/members" part of the RIB was
deprecated. Removal of the gam means that initial connectivity based
on changes in the RIB can't be provided, so some changes were
required throughout the normal IPCP.
The enrollment procedure was revised to establish its own
connectivity. First, it gets boot information from a peer by
establishing a connection to the remote enrollment component and
downloading the IPCP configuratoin. This is now done using its own
protocol buffers message in anticipation of deprecation of the RIB and
CDAP for communication within a DIF.
After the boot information is downloaded, it establishes a data
transfer flow for enrolling the directory (DHT). After the DHT has
enrolled, it signals the peer to that enrollment is done, and the data
transfer connection is torn down.
Signaling connections is done via the nbs struct, which is now passed
to the connmgr, which enables control of the connectivity graph from
external sources.
|
| |
|
|
|
|
| |
This fixes several assignments to the wrong enum type.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds support for libgcrypt. If at least version 1.7.0 of
libgcrypt is present, it may be used for secure random number
generation and is used for hashing in the irmd/ipcp.
The hash definitions are moved to the internal hash.h header, and
defined independently of the hashes that are defined as part of the
directory policy for the normal IPCP. The translation is moved from
the IRMd to ipcpd/ipcp.h. The bootstrap call from the IRMd expects the
IPCP to return the correct hash algorithm with a dif_info struct,
which is in line with the behavior of the enroll call.
This also improves how some platform checks in the build system are
handled.
|
|
|
|
|
|
|
| |
This will hardcode the shim hash algorithms as they don't have an
enrollment phase.
Fixes #44
|
|
|
|
|
|
| |
This makes the routing component into a policy since different
approaches may exist to do this, depending on how high the rank of the
DIF is.
|
|
|
|
|
|
| |
This commits adds the functions and messages to specify a fixed
protocol syntax during CACEP. It also revises the messages for
specifying the DT protocol syntax from the irm tool.
|
|
|
|
| |
Currently CRC32, MD5, and SHA3 (224, 256, 384 and 512 bit) are supported.
|
|
|
|
|
|
|
|
|
| |
All information passed over the IRMd/IPCP boundary for using IPC
services (flow allocation, registration) is now hashed. This
effectively fixes the shared namespace between DIFs and the IRMDs.
This PR also fixes some API issues (adding const identifiers),
shuffles the include headers a bit and some small bugs.
|
|
|
|
|
|
|
| |
Our mailserver was migrated from intec.ugent.be to the central
ugent.be emailserver. This PR updates the header files to reflect this
change as well. Some header files were also homogenized if the
parameters within the functions were badly aligned.
|
|
|
|
|
|
|
|
|
|
| |
This PR updates the normal IPCP to use the new RIB. The old ribmgr is
removed and replaced by a stub that needs to be implemented. All
components (dir, fmgr, frct) were adapted to the new RIB API. A lot
of functionality was moved outside of the ribmgr, such as the
addr_auth, which is now a component of the IPCP. The address is also
stored to the ipcpi struct. The irm tool has an option to set the gam
policy of the rib manager.
|
|
|
|
|
| |
This allows the selection of a policy for the graph adjacency
manager. Currently we only support constructing a complete graph.
|
|
|
|
|
|
|
| |
This allows IPCPs to bind a name, so that they can announce their name
to neighbors which can then allocate a flow to them. Registering of
the name happens by an administrator. It also moves the irmd_api to
common ground, since it is used by all IPCPs.
|
|
|
|
|
| |
This corrects the license statements on all files. Installed headers
are LGPLv2.1, the rest of the code is GPLv2.
|
|\
| |
| |
| | |
ipcpd: normal: Add policy for obtaining a flat address
|
| |
| |
| |
| |
| |
| | |
This adds a policy for obtaining a flat address, and thus also the
infrastructure for policies in the IPCP. The IPCP should check if the
address is available; this is currently not there yet.
|
|/ |
|