| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
| |
The ugent email addresses are shut down, updated to Ouroboros mail
addresses.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
| |
Happy New Year, Ouroboros!
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
| |
The ECN marking function should be able to use the packet QoS to allow
prioritizing traffic under congestion. Not yet implemented in MB-ECN.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
| |
The t_sent variable is a remnant from the first version and isn't
needed anymore.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
| |
The previous value of the ECN field should be passed to the congestion
notification function.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The EIDs are now 64-bit. This makes it a tad harder to guess them
(think of port scanning). The implementation has only the most
significant 32 bits random to quickly map EIDs to N+1 flows. While
this is equivalent to a random cookie as a check on flows, the
rationale is that valid endpoint IDs should be pretty hard to guess
(and thus be 64-bit random at least). Ideally one would use
content-addressable memory for this kind of mapping.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
| |
There is a check not to rapidly double the window to astronomical
sizes when there is no congestion experienced for long periods of
time, but the if-else logic was botched and it still grew to
astronomical sizes (albeit linear instead of exponential).
I also lowered the ECN threshold a bit.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The DT will now post all packets for N+1 flows through the flow
allocator component. This means that N+1 flows can be monitored
through the flow allocator stats, and N-1 flows through the DT stats.
The DT component still keeps stats for the local components (FA and
DHT), but this can be removed once the DHT has its own RIB
output.
The flow allocator show statistics for
Sent packets: total packets that were presented for sending
on this specific flow
Send failed: packets that were unable to be sent
Received packets: total packets that were presented by the DT component
on this specific flow
Received failed: packets that were unable to be delivered
These stats are presented as both packet counts and byte counts. To
know how many were successful, the values for failed need to be
subtracted from the values for total.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
| |
Noticed an off-by-one in the packet counter because it was incremented
before and the byte counter after the flow update.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
|
| |
The RIB will now show some stats for the flow allocator, including
congestion avoidance statistics. This is needed before decoupling the
data transfer component and the flow allocator as some current stats
show in DT will move to FA.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
| |
The mb-ecn policy has a couple of divisions in the math, which I
wanted to avoid. Now it measures the number of bytes sent in a window,
and updates the next window with AIMD logic. If the number of bytes in
the window is reached, the call blocks. To avoid long packet bursts,
the window size continually scales to contain between CA_MINPS (8) and
CA_MAXPS (64) packets.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
| |
The dt component bypasses the flow allocator on the receiver side, and
may try to update congestion context when the flow has already been
deallocated by the receiver. I will fix this bypass and always pass
through the flow allocator sometime soon; for now, I added a check in
the flow allocator call to avoid the SEGV.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
| |
The enrollment procedure was not passing the policy for congestion
avoidance.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds congestion avoidance policies to the unicast IPCP. The
default policy is a multi-bit explicit congestion avoidance algorithm
based on data-center TCP congestion avoidance (DCTCP) to relay
information about the maximum queue depth that packets experienced to
the receiver. There's also a "nop" policy to disable congestion
avoidance for testing and benchmarking purposes.
The (initial) API for congestion avoidance policies is:
void * (* ctx_create)(void);
void (* ctx_destroy)(void * ctx);
These calls create / and or destroy a context for congestion control
for a specific flow. Thread-safety of the context is the
responsability of the flow allocator (operations on the ctx should be
performed under a lock).
ca_wnd_t (* ctx_update_snd)(void * ctx,
size_t len);
This is the sender call to update the context, and should be called
for every packet that is sent on the flow. The len parameter in this
API is the packet length, which allows calculating the bandwidth. It
returns an opaque union type that is used for the call to check/wait
if the congestion window is open or closed (and allowing to release
locks before waiting).
bool (* ctx_update_rcv)(void * ctx,
size_t len,
uint8_t ecn,
uint16_t * ece);
This is the call to update the flow congestion context on the receiver
side. It should be called for every received packet. It gets the ecn
value from the packet and its length, and returns the ECE (explicit
congestion experienced) value to be sent to the sender in case of
congestion. The boolean returned signals whether or not a congestion
update needs to be sent.
void (* ctx_update_ece)(void * ctx,
uint16_t ece);
This is the call for the sending side top update the context when it
receives an ECE update from the receiver.
void (* wnd_wait)(ca_wnd_t wnd);
This is a (blocking) call that waits for the congestion window to
clear. It should be stateless (to avoid waiting under locks). This may
change later on if passing the context is needed for different algorithms.
uint8_t (* calc_ecn)(int fd,
size_t len);
This is the call that intermediate IPCPs(routers) should use to update
the ECN field on passing packets.
The multi-bit ECN policy bases the value for the ECN field on the
depth of the rbuff queue packets will be sent on. I created another
call to grab the queue depth as fccntl is write-locking the
application. We can further optimize this to avoid most locking on the
rbuff.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
| |
The flow stats had quite a lot of duplication.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
| |
The condition variable was not initialized correctly and using the
wrong clock for pthread_cond_timedwait.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
| |
Fix assignment instead of comparison operator.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
| |
There were some issues identified by the Clang static analyzer that
are now fixed.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
| |
GCC 10 static analyzer found that the wrong index was used in the fail
path of psched_create, causing double (multiple) frees.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
| |
GCC 10 defaults to -fno-common, so some variables that were defined in
the headers needed to be declared "extern". The GCC 10 static analyzer
can now be invoked using the DebugAnalyzer build option.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
| |
This is more in line with the write() system call and prepares for
partial writes. Partial writes are disabled by default (and not yet
implemented).
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
| |
There were updates under rdlock instead of wrlock, causing data races
and trouble. Also speeds up shutdown a bit.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
| |
The initial implementation for the ECDHE key exchange was doing the
key exchange after a flow was established. The public keys are now
sent allowg on the flow allocation messages, so that an encrypted
tunnel can be created within 1 RTT. The flow allocation steps had to
be extended to pass the opaque data ('piggybacking').
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
| |
This adds tests for LFA and ECMP to the graph_test routine.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
| |
There were bugs introduced in the LFA algorithm refactor causing
infinite recursion and SEGV. The infinite recursion check was added as
an explicit compiler flag to the build.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
| |
Otherwise the compile will complain that the comparison of an unsigned
enum expression < 0 is always false.
Signed-off-by: Sander Vrijders <[email protected]>
Signed-off-by: Dimitri Staessens <[email protected]>
|
|
|
|
|
|
|
|
| |
Some fixes in the multipath implementation related to memory
management that showed up with the static analyzer.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
|
| |
This adds an equal-cost multipath routing policy to Ouroboros, based
on Nick Aerts' code. When selected, flows will send packets over all
paths with equal cost (hop count). Path selection is round-robin. It
does not yet take into account flows that are down.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
| |
During refactor a variable initialization was removed.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
| |
This makes the hashtable more tailored to a packet forwarding table
(PFT). In the end not much of a change was needed, but now it's clear
the pft maps a destination address to a list of (outgoing) fds.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
|
| |
The vertex was used before definition in the graph
implementation. Fixed potential data race in link_state
algorithm. Added missing asserts. Removed initialization of variables
where not needed to let compiler warn about uninitialized uses.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
| |
The Packet Forwarding Function (PFF) was user-configurable using the
irm tool. However, this isn't really wanted since the PFF is dictated
by the routing algorithm. This moves the responsability for selecting
the correct PFF from the network admin to the unicast IPCP
implementation. Each routing policy now has to specify which PFF it
will use.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
|
| |
The hashtable is only used for forwarding tables in the unicast
IPCP. This moves the generic hashtable out of the library into the
unicast IPCP to prepare a more tailored implementation specific to
routing tables containing address lists.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
|
| |
The LFA algorithm modifies the output of the simple routing algorithm,
but the output was mixed in the general call. This moves the LFA
subroutine to be self-contained. This makes for a cleaner entry point
when adding more routing algorithms.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
| |
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds a per-message symmetric encryption using the OpenSSL
library. At flow allocation, an Elliptic Curve Diffie-Hellman exchange
is performed to derive a shared secret, which is then hashed using
SHA3-256 to be used as a key for symmetric AES-256 encryption. Each
message on an encrypted flow adds a small crypto header that includes
a random 128-bit Initialization Vector (IV). If the server does not
have OpenSSL enabled, the flow allocation will fail with an -ECRYPT
error.
Future optimizations are to piggyback the public keys on the flow
allocation message, and to enable per-flow encryption that maintains
the context of the encryption over multiple packets and doesn't
require sending IVs.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|
|
This completes the renaming of the normal IPCP to the unicast IPCP in
the sources, to get everything consistent with the documentation.
Signed-off-by: Dimitri Staessens <[email protected]>
Signed-off-by: Sander Vrijders <[email protected]>
|