summaryrefslogtreecommitdiff
path: root/src/ipcpd/unicast/fa.h
Commit message (Collapse)AuthorAgeFilesLines
* ipcpd: Add congestion avoidance policiesDimitri Staessens2020-12-021-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This adds congestion avoidance policies to the unicast IPCP. The default policy is a multi-bit explicit congestion avoidance algorithm based on data-center TCP congestion avoidance (DCTCP) to relay information about the maximum queue depth that packets experienced to the receiver. There's also a "nop" policy to disable congestion avoidance for testing and benchmarking purposes. The (initial) API for congestion avoidance policies is: void * (* ctx_create)(void); void (* ctx_destroy)(void * ctx); These calls create / and or destroy a context for congestion control for a specific flow. Thread-safety of the context is the responsability of the flow allocator (operations on the ctx should be performed under a lock). ca_wnd_t (* ctx_update_snd)(void * ctx, size_t len); This is the sender call to update the context, and should be called for every packet that is sent on the flow. The len parameter in this API is the packet length, which allows calculating the bandwidth. It returns an opaque union type that is used for the call to check/wait if the congestion window is open or closed (and allowing to release locks before waiting). bool (* ctx_update_rcv)(void * ctx, size_t len, uint8_t ecn, uint16_t * ece); This is the call to update the flow congestion context on the receiver side. It should be called for every received packet. It gets the ecn value from the packet and its length, and returns the ECE (explicit congestion experienced) value to be sent to the sender in case of congestion. The boolean returned signals whether or not a congestion update needs to be sent. void (* ctx_update_ece)(void * ctx, uint16_t ece); This is the call for the sending side top update the context when it receives an ECE update from the receiver. void (* wnd_wait)(ca_wnd_t wnd); This is a (blocking) call that waits for the congestion window to clear. It should be stateless (to avoid waiting under locks). This may change later on if passing the context is needed for different algorithms. uint8_t (* calc_ecn)(int fd, size_t len); This is the call that intermediate IPCPs(routers) should use to update the ECN field on passing packets. The multi-bit ECN policy bases the value for the ECN field on the depth of the rbuff queue packets will be sent on. I created another call to grab the queue depth as fccntl is write-locking the application. We can further optimize this to avoid most locking on the rbuff. Signed-off-by: Dimitri Staessens <[email protected]> Signed-off-by: Sander Vrijders <[email protected]>
* lib, ipcpd: piggyback ECDHE on flow allocationDimitri Staessens2020-02-251-4/+8
| | | | | | | | | | | The initial implementation for the ECDHE key exchange was doing the key exchange after a flow was established. The public keys are now sent allowg on the flow allocation messages, so that an encrypted tunnel can be created within 1 RTT. The flow allocation steps had to be extended to pass the opaque data ('piggybacking'). Signed-off-by: Dimitri Staessens <[email protected]> Signed-off-by: Sander Vrijders <[email protected]>
* build: Update copyright to 20200.16.0Dimitri Staessens2020-01-021-1/+1
| | | | | Signed-off-by: Dimitri Staessens <[email protected]> Signed-off-by: Sander Vrijders <[email protected]>
* build: Refactor normal to unicastDimitri Staessens2019-07-291-0/+46
This completes the renaming of the normal IPCP to the unicast IPCP in the sources, to get everything consistent with the documentation. Signed-off-by: Dimitri Staessens <[email protected]> Signed-off-by: Sander Vrijders <[email protected]>